COMPUTER SCIENCE IN FOCUS: 1986

1986 AC

Fourtee/nth Annual

TER

COMF
SCIE
CONFE

February 4-6; 1986

Cincinnati, Ohio

vr

i

A FORMALISM FOR VIEWS IN A LOGIC DATA BASE

José C.F.M. Neves®, George F. Lug er®

* and Jo3o . Carvalho®

*Department of Computer Science
Minho University, Braga, Portugal

**Deparment of Computer Science
University of New Mexico, U.S.A.

Abstract

A formal specification of views for a logic data
base is introduced based on an ordered set of first order
fogic languages. This formalism offers an efficient tool
for the specification of a large class of data base
operations. The data base query language
Query-By-Example is extended to handle this class of
data base operations. Finally, a formal characterization
of the logic data base by the mathematical structure of
a group is presented.

KEYWORDS: First Order Predicate Logic, Logic Data
Base, Query-By-Example, Data Base View, Group,
PROLOG.

1. Introduction

A data base of facts and general logic rules
relating facts and other rules is a pre-requisite for
natural language understanding, plan generation, and
expert systems applications where an (often large)
knowledge base is required. A formalism that approaches
both data base and knowledge base management in an
uniform manner, is reported in Neves (1). This formalism
offers a predicate logic based specification and a
practical language, PROLOG (Roussel (2), Warren (3)),
for expert systems and data base design.

Query-By~Example (QBE, Zloof (8)) is a language
developed for querying relational data bases (Codd (5
The similarity between QBE syntax and PROLOG goals
has been noted in the literature {Neves et al {6)).

This paper extends the logic data base system given
in (1) to allow for data base views to be represented as

with each of its argument positions. Each constant or
variable must also be typed. The following conventions
are used in this paper, viz. :

- Variables are denoted by strings of symbols
beginning with an upper-case letter or the symbol
underscore "_".

- Constant are denoted by strings of symbols starting
with lower-case letters.

- {X1,X2,...,Xn} denotes the set whose members are
X1,X2,000, X000

- <X1,X2,..,Xn> denotes the ordered set or n-tuple
whose members are X1,X2,...,Xn.

- An n-ary relation is a set of n-tuples.

- An n-ary relation is defined in a sentence of the
form r{X1,X2,..,Xn) (e.g., r(X1, X2) for "X1 bears r to
X2"), :

- With an n-ary relation r one associates the set of
n-tuples that forms the extension of 'r!, i.e., r =
{<X1,X2,000,X0> | 1(X1,X2,00.Xn)}. The symbol "|" is "such
that'. .

- <X1/71,%2/72,...,.Xn/Tn> ¢ r {rarelation), indicates
that X1,X2,...,Xn are free variables of r and T1,72,...,Tn
are their types. <X1/T1,X2/72,...Xn/Tn> is said to belong
to the extension of relation r. "e" is the element relation.

- An n-place predicate is interpreted as a set of
ordered n-tuples; or if considered semantically, an
n-place predicate is called a relation.

- By a function is meant the assignment (function)
which binds an extension to each predicate constant in

logic rules. The data base query language QBE s
extended in order to allow for the definition of this type
of data base operation. Finally, the formal
characterization of a logic data base system by the
mathematical structure of a group is presented.

2. The Underlying Logic Data Base System

In a logic data base every relation, predicate,
function or data base query must have a type associated

Pcrmission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fec and/or specific permission,

© 1986 ACM-0-89791-177-6/86/0002/0227 $00.75

227

each interpretation.

- A term is defined inductively as:
(i) A variable is a term.
(i) A constant is a term.
(iti) 1f f is an n-place function and RI,R2,..,Rn are
terms, then f(R1,R2,...,Rn} is a term.

- An atom is a formula defined inductively as: if p
is an n-place predicate and R1,R2,...,Rn are terms, then
p(R1,R2,...,Rn) is an atom or atomic formula.

- A literal is an atom or the negation of an atom.

- A clause is a formula of the form: for all
X1,X2,000,Xn {q V= p1 “p2 V .o V * pn) where the q and
each pi {1<=i<=n) is a literal and X1,X2,...,Xn are the
variables ocurring in the q and each pi. This clause s
denoted by q <- p1,p2,...,pn. The symbol '™ is to be
treated as "not", "V" is inclusive "or", and the reverse
arrow '<-" {s "if",

For background material on group theory,

mathematical logic, and types see (7), and (8).

3. A Logic Data Base as a Group

Consider a department-store data base whose
relations: "suppliers", "supplier-parts", "parts”, “orders",
and "manager” have types associated with each attribute
position. In order to treat types. as. objects, a new
relation "relation" is added to the data base, giving the
type of the relations' types, viz. .

{<suppliers, supplier-parts, parts, orders, manager> ¢
relation}

<sno, sname, status, city> ¢ suppliers)

<sno, pno, gly, deptno> ¢ supplier-parts]

<pno, pname, color, weight> ¢ orders}

<manager's name, deptno, address, age> ¢ manager}

The left-hand side of each sentence denotes the
sequence of data types that are associated with the
relation name on the right-hand side of the sentence.
Thus, for the extension of each relation, and at the
planning level, one has (Neves et al (9)):

{<suppliers/relation, supplier-parts/relation, parts/
relation, orders/relation, manager/relation> ¢ relationl
relation(suppliers, supplier-parts, parts, orders, manager)}
<X1/sno, X2/sname, X3/status, X4/city > € suppliers
suppliers(X1, X2, X3, X4) }

< Y1/sno, Y2/pno, Y3/qty, Y4/deptno > ¢ supplier-parts
supplier-parts(Y1, Y2, Y3, Y4) |

{< Z1/pno, Z2/pname, Z3/color, Z4/weight > ¢ parts
parts | parts(Z1, 22, Z3, Z4) }
< Al/pno, Alldeptno,. A3/manager's name > € orders

orders{ A1, A2, A3) }
{< B1/manager's name, B2/deptno, B3/adress, B4/age > €
manager | manager{ B1, B2, B3, BY) }

One may also have the general rule, viz.

{<Yi/sno, , _,_> ¢ supplier-partslfor {each < Y1/sno,
,,_> ¢ suppliers-parts holds (suppliers-parts (Y1, _,
_ _) <-suppliers{ Y1, _, _ J}) i

{suppliers(_, _, _X#) ¢ suppliers | for each< _, _, _, X4/
city > € suppliers holds (suppliers_, _, _, X#)<~XU=london
or- X#4=new york)))}

The underscore ("_)
existentially quantified.

represents a unique variable

The last two sentences are integrity constraints of
type "value-based" (Williams et al (10)). The first of the
senténces states that one can only have an entry for a
given supplier in the "supplier-parts” relation, if an entry

suppliers(___._,X8) -> true ifall{<__,_, X&/city > ¢
suppliers,(<-[value-based{< X#/city > (suppliers(_._._, X4)
<~ X#=london;Xl=new york), true))), true).

The arrow "->" is to be read as "evaluates to" and "all" is
a logic function that calls for aggregation of the general
form, viz.

holds{<Q1/T1,Q2/72,...,Qj/Tj> € U prlg<- pl,p2, «.,pi),
S)<= p1,p2,...,pi.

This may be read as:

for all Q1,Q2,...,Qj in the domain of pr (r<=i} such that
if each pr holds then bolds(<Q1/T1,Q2/72,...,Qj/T}> e U
pr, {g<= p1,p2,...,pi),S) holds.

Q1,Q2,...,Q} are objects (variable terms or constants)
that may occur as arguments in q and each pi, and
T1,72,...,Tj are their types. S is the data base object that
is returned as a consequence of the evaluation of the
term conjunction p1,p2,...,pi. The symbol "U" models the
process of set union.

Thus, the extensions of relations are tuples, the
extension of integrity constraints are truth-values (i.e.
"true", and "false"), and the extension of types are
entities.

This, definition characterizes a logic data base system
by the mathematical structure of a group. A logic data
base is then given by the sequence, viz.

<el,e2,..,emrl,r2,..,rm:f1,£2,..,£fk;01,02,..,0l>

el,e2,...,.en are sets; ril,r2,..,rm are zero or more
relations included in eiXe2X,...Xen;f1,f2,....,fk are zero
or more functions included in elXe2X...Xen; and
01,02,...,0} are zero or more data base objects included
in elUe2U...Uen {e1Xe2X...Xen denotes the cartesian
product of el,e2,..,en).

q, A QBE-Like Formulation of Views

A data view can be described either as a special
kind of access constraint associated with one or more
relations, as the extension of a data base relation (i.e.,
its current value), or as a relation containing only part
of the information of a data base relation (or parts of
several relations). This effectively shields data base
information from the user(s). One must then be able, viz.

- To delegate one or more types of access rights to
specific users

- To confine the user(s) to access only a subset of the
data in the data base.

for the supplier concerned already exists in the extension
of the "suppliers” relation. The second one states that
only suppliers from London or New York can be suppliers
to the department store.

At the domain level, the abstract specification of
the department store data base above translates into the
set-of ground clauses and the general rules, viz.

suppliers(3, blake, 30, paris). suppliers(i, smith, 20,
supplier-parts(2, 1, 75, 2). vienna).
parts (2, screw, red, 10). supplier-parts(1, 3, 25, 5).
orders(2, 1, peter). parts(3, hammer, green,
manager(peter, 2, london, 5}. 80}
orders(3, 2, john).
manager(john, 5, paris,
45).
supplier—parts(Y1,_,_,) -> true if alllk¥1/sno,__._ > €

supplier—parts, {<~(value-based(<Y1/sno> (supplier-parts

{Y1,_,_._) <- supplierstY1,_,_), true)), true).

228

As—an—example;~suppose-that-it-is—desired-to-set
read-only access to relation "suppliers” for user Jones,
for suppliers from London or Paris, who supply parts that
are red. One may enter {the user's contribution is in
bold):

suppliers - sno sname status -clty
iv.|p.|.|]ones|. i X ' D
supplier parts I sno pno qty deptno
‘ I x Y
parts | pno pname color weight
! Y red
CONDITIONS

D=london or D=paris

The entry in the tuple-comrmand-field of the derived
relation has the format, viz.

iv.[<user-operation>|.|<users-list>], or
i.view.|< user-operatioml.|<users-list>|.

The ertry |<user~opera&ion>l is a list of one or more of
the four rights "p." {print), "i." linsert), "u." [update) or
"d." {delete). The entry [<user-tist>| is the user(s)
identification to the system. In generalizing this itern,
following the philosophy of QBE, variables may be used
in place of <user-operation> or <users-list>,

As an example, suppose that one wishes to create.
a view "orders" that gives the items ordered for cach
department, with the manager ordering them. Access
rights are to be granted only to the departments’
managers. To fulfill this enter:

.orders | pno deptno manager's name
iv.R.U. | A B v
supplier-parts | sno pno qty deptno

! A B

manager | manager's name deptno address age

iU B

5. Compiling Views

The integration of information such as that found
in the previous section into the knowledge base, requires
the existence in the data base of a new relation, namely
the ‘"access-rights" relation with attribute-names:
"user", "user-operation" and "relation-name". This is a
ternary relation that is described in a sentence of the
form: access-rights{S, T, U), where S is the user that is
entitled to perform operation T on relation U. Formally:

| <user, user-operation, relation-name> ¢ access-right |
{<S/user, T/user-operation, U/relation-name> € access-
righ.ts|access~rights(5, T, U}

The first of the two QBE sentences of section 4
translates into the logic forimulae (at the planning level):

{<X/sno, Y/sname, Z/status, C/city> ¢ suppliers]for

(each<X/sno, Y/sname, Z/status, C/city> ¢ suppliers
holds for{the <jones/user, p/user-operation, suppliers/
relation-name> ¢ access-rights holds access-rights
(jones, p, suppliers)) € for(each <X/sno, Y /sname,

Z/status, D/city> e suppliers holds (suppliers(X, Y, Z, D)
& supplier-parts(X, A, B, C) ¢ parts (A, E, F, G) &
D=london; D=paris)}}

| <jones/user, p/user-operation, suppliers/relation-name

oeneral sentence "holds". "the" is a logic function that
calls for aggreqgation; it returns the sole data base object
that satisfies the term conjunction p1,p2,...,pi.

At the planning level, the last QBE sentence
translates into the logic formulae, viz.

{<A/pno, B/deptno, U/manager's name> ¢ orders | for(the
<U/user, R/user-operation, orders [relation-name> ¢
access-rights holds (access-rights (U, R, orders))) &
forleach <A/pno, B/deptno, U/manager's name> ¢ orders
holds (orderslA, B, U) & supplier-parts(_,. A, B) ¢
manager(U, B, _,)}

{<U/user, R/user-operation, orders/relation> ¢ access~
rightslfor(the<U/user, R/user-operation, orders/relation
> e acess-rights holds (acess-rights{U, R, orders)}}

The following set of clauses is now added to the data
base (at the methods level), viz.

view(<<A/pno, B/deptno, U/manager> ¢ orders, < U, R,

orders> ¢ acess-rights>, (orders{A, B, U)), {<A, B, U>}) <
<~ the(<U, R, orders> ¢ acess-rights, (<~ acess-rights(U,

R, orders)), {<U, R, orders>}), alll<A, B, U> ¢ orders,

(<~ orders(A, B, U), supplier-parts(_, A, B), manager(U,
B, _), {<A, B, U>}))

acess-rights{U, R, orders).

Applying these rules to the data base results in the
set of clauses that form a view; i.e. the views are
managed by applying to the data base a set of logic rules
that select from the clauses in the data base the ones
that are the candidates to be used in a well defined data
base operation by a specific user,

6. Translating View Updates on Data Base Relations

When updating a data base view, consistency must
be maintained between the relation (or relations) being
updated and those remaining in the data base. That is,
when updating a data base relation, logic rules have to
be triggered that will reflect the changes made on the
view across all the data in the data base. This is
accomplished through the use of logic rules called
“triggers® (Neves and Santos (11)). As an example,
consider the situation where the part-numbers for parts
that are red are to be changed by a factor of 10. The
data base operation is performed by a specific user {e.g.,
Jones below). To fulfill this Jones enters:

> € access—rlghtsiforuhe <jonesfuser, p / user-operation,
suppliers/relation-name> e access-rights holds {access-
rights{jones, p, suppliers))}

These sentences translate into a set of scntences
of type "holds" to be added to the data base (at the
methods level):

view(<<X/sno, Y/sname, Z/satus, D/city> ¢ suppliers,
<jones/user, p/user-operation, suppliers/relation-name
> € access-rights>, (suppliers(X, Y, Z, D)), {< X, Y, Z,

D >})<~ the (<jones, p, suppliers > ¢ access-rights, (<-
access-rights{jones, p. suppliers)), |<jones, p,
suppliers>}), alll<X, Y, Z, D> € suppliers, (< - suppliers
(X, Y, Z, D), supplier-parts(X, A, B, C), parts(A, E, F, G),
D=london; D=paris), {<X, Y, Z, D>})).

access-rights(jones, p, suppliers).

The sentences “view", and "the" are also instances of the

229

parts | pno pname color weight
u. - Y A red B
I X A red B
CONDITIONS
Y=10*X

The entry "u." in the tuple-command-field of relation
"parts" identifies the new entry in relation "parts" that
will superseed (update) the old one. Formally:

{< Y/pno, Alpname, red/color, B/weight >:< X/pno,
A/pname, red/color, B/weight> ¢ partslfor(each < Y/pno,
Alpname, red/color, B/weight> € parts holds (parts(Y, A,
red, B)<- parts(X, A, red, B), Y=10*X))}

In an entry of the form M:N (with M and N are n-tuples),
N refers to the tuple being updated and M refers to the
tuple returned as a consequence of the updating
operation. Thus, If "r" denotes the extension of relation
"parts" back to the point.in time previous to the update
operation and "r" denotes its extension thereafter:

r'=r-{<.Y./pno, Alpnamne, rad/color, G/weight> € partsi
parts (X, A, red, B) | U {< Y/pno, Alpname, red/color,
B/weight ¢ parts|partslY, A, red, B) & Y=10*X]}

The symbol "-" models the process of set subtraction.

Note, however, that the "parts" relation shares common
attributes with relations “suppliers-parts" and "orders"
{(namely the attribute name "part-number" {pno)). Any
change to the attribute values of argument "pno" in the
“parts" relation must therefore be reflected on the other
two relations. This'is necessary to reflect the effect of
an update operation across the other relations in the data
base that share common attributes with the relation
being updated. This requires the existence of another

relation, namely the event" relation with
attribute-names: “user", "user-operation",
wrelation-name", "old”, and "new". This is a 5-ary

relation that may be described by a sentence of the
form, viz.

event(s, T, U, <01, 02, ..., On>,<N1, N2, ..., Nn>)

In this sentence S is the user which performed the data
base operation T on relation U changing the data base
objects listed in sequence <01, 02, ., On> into the data
base objects listed in sequence < N1, N2, .., Nn >,
Formally:

{<user, user—operation, relation-name, T1, T2, ..., Tn >¢
event|

{<S/user, Tluser-operation, U/relation-name, < O1/T1,
02/T2, v, OniTa>, <N1/T1, N2/T2, «o; N0/Tn >> cevent|
event(S, T, U, <01, 02, «.., On>, <N1, N2, «e, Nn>)}

where <T1, T2, ..., Tn> ¢ U, Thus, for relation parts:
{<jones, u, parts, pno, pname, color, weight> € event}

{<jones/user, u/user—-operation, parts/relation-name, <
X/pnd, Alpname, red/color, B/weight>, <Y/pno,Alpname,
red/color, B/weight>> € event event{jones, u, parts, <
X, A, red, B>,<Y, A, red, B>)) & Y=10*X}

The predicate "event" is a data base relation. This
is used to record changes in the attribute values of a
particular relation that may interfere with attribute
values in other relations, and the values of those
changes. The extension of the vevent” relation is built on
thz ‘“update" operation performed on a particular
relation. This implies that trigger—rules applied to the
“supplier-parts” and "orders" relations must be entered
into the data base. For the "orders" relation:

8/manager's name> ¢ orders holds{orders(New, A, B) <
- orders(Old, A,

The entry in the tuple-command-field of the trigger
relation {i.2., the "parts" relation) has the format:

tevent.)< user-operation> ||< users-list> I

The entry in the tupple-command-~field of the triggered
relation li.e., the "orders" relation) has the format:

<user-operation>.taction.|<user-operation> |

A similar rule applies to the "supplier-parts" relation.
The concrete syntax of the full query language may be
found in (11).

7. Conclusions

A formal characterization of a logic data base by’
the mathematical structure of a group has been
presented. Expressing the view mechanism in QBE within
the framework of the clausal form of predicate logic has
been shown to be feasible and friendly from the user'
point of view.

Relationships between the objects that make up the
view are identified at several levels of abstraction in the
view problem solving process. These are either from the
probiem 'solving task itself or the logic used to
implement it. An advantage of the approach proposed
here is that an input string in the form of a QBE
sentence is easily scrutinized for purposes of
manipulating it or generating PROLOG code.

Finally, the use of an ordered set of logic languages
for handling data simplifies and clatrifies some data base
operations. These operations are translated into extended
logic programs or goals that can be evaluated by using
any standard PROLOG system.

Aknowledgements

This research is supported by North Atlantic Treaty
Organization grant for International Collaboration in
Research awarded to George F. Luger and José C.F.M.
Neves.

References

(1) Neves, J.C.F.M., The Application of Logic
Programming to Data Bases, PhD Thesis,
Department of Cemputer Science, Heriot-Watt

University, Edinburgh, Sctoland, November 1983.

" l " col eigit {2) Roussel, P.,, PROLOC - Manuel de Reference et
parts pno pname color wWelgl d'Utilization, Groupe d'Intelligence Artificielle,
tevent.ju.].L. New Université d'Aix-Marseille, Luminy, France, 1975
olid (3) wWarren, D.H.D., Implementing PROLOG -
d | dent ‘< na Compiling Predicate Logic Programs, Research
orders pno eptno manager’'s hame Reports 39 and 40, Department of Artificial
i.taction.)u.|. ! New A B Intelligence, University of Edinburgh, 1977.
Old A B W) Zloof, MM., Query-By-Example - A Data Base
IBM Syst
The entry "event.u.|.L." in the 15(212?;35399, ystems Journal, 16, 4, 1977,
tuple~command-field of the relation "parts" signals the '
events that set the update of the "orders" relation into {s) Codd, E.F., A Relational Model for Large Shared
action. The entry ‘“i.tactiom|uls in the Data Banks, CACM 13, 6, 1970, 337-387.
- 1 H 1 " 1
tuf'f. comma;f f'?ld Ofd rel(aju?:e ':!'d:rsf sngtn'als thte (6) Neves, J.C.F.M., Anderson, S.0. and Willimans,
;:e a 1o‘r; .to triggered an ind of action set. M.H., A PROLOG Implementation of
ormaily: Query-By-Example, Proceedings of the 7th
{<New/pno, Aldeptno, B/manager's name >:< Old/pno, .International Computing Symposium, March 22-24,
Aldeptno, B/manager's name> € orders | for(each 1983, Nurnberg, Germany, 318-332,
<jones/user, u/user—operation, parts/relation-name, (7) Knuth, D.E., and Bendix, P.B., Simple Word

<Old/pno>, <tiew/pno>> ¢ event holds (eventl(jones, u,
parts, <Old>, <New>) & forleach<New/pno, Aldepno,

230

Problems in Universal Algebras, in Computational

(10)

Q1)

Proolems in Abstract Algedra, J. Luch, (ed.),
Pergamon Press Publishing Co., 1969, 263-297,

Enderton, H.B., A Mathematical Introduction to
Logic, Academic Press:Publishing Co,, New York,
1972. ’

Neves, J.C.F.M., Luger, G.F., and Amaraf, L.,
Integrating a User's Knowledge into a Knowledge
Base using a Logic Based Representation, Research
Report CS 85-2, The University of New Mexico,
Department ‘of Computer Science, Albuquerque,
U.S.A., 1985,

Williams, M.H., Neves, J.C.F. M., and Anderson,
S.0., Security and Integrity in Logic Data Bases
using Query-By-Example, Proceeding of the Logic
Programming Workshop'83, Algarve, Portugal,
1983.

Neves, J.C.F.M., and Santos, S.M., Triggers in a
Logic Data Base using Query-By-Example,
Proceedings of the Collogue International
d'Intelligence Artificielle, Marseille, October
24-26, France, 1984,

T

231

